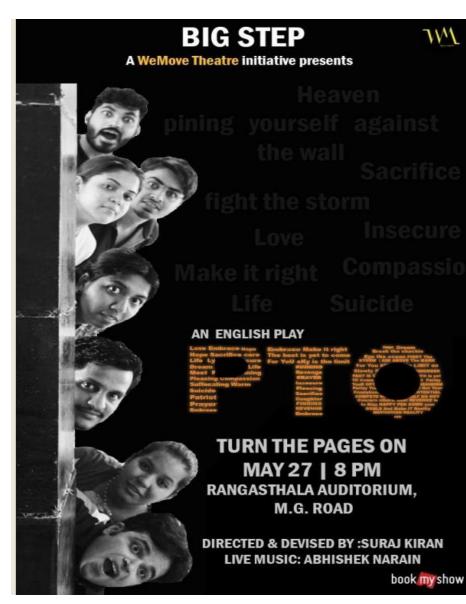


Risk Assessment For Analytical Methods


Manu Grover Product Manager, Pharmaceuticals Waters India

©2017 Waters Corporation COMPANY CONFIDENTIAL

What is Risk ?

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

111

Why Risk Assessment?

Death of a fisherman snatched by a crocod.

Daily Mail - 634 × 664 - Search by image

The coroner recommended that the Northern Territory government issue warnings that 'saltwater crocodiles can attack

ver Cruises

Why do we have queries from agencies?

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters

Incomplete data

Impurity profiling Mass balance Studies Understanding Innovators Incomplete specs Solution Stability

Method Concerns

Justification of analytical /Dissolution conditions Use of filters etc. Incomplete validations In-appropriate LOD/LOQ

Human Concerns

Lack of experience Lack of awareness Work Pressure/Timelines Lack of Training

Sample Concerns

Grade of Material-DMF source-Diff Specs

Input Materials related concerns like P.size, etc.

Solid State Characterization

Areas where "Risk Assessment" is required

©2017 Waters Corporation COMPANY CONFIDENTIAL

Definitions

A systematic process of evaluating the potential risks that may be involved in a projected activity or undertaking.

Risk assessment is the process where you:

- Identify Weak Parameters/process
- Analyze or evaluate the risk associated with that weak parameter
- Determine appropriate ways to eliminate or control the weak parameter.

A risk assessment is a thorough look at your analytical methods to identify those process/parameters etc that may cause analytical issues like ir-reproducibility, non-compliance, loss of resolution etc .

Evaluation of how likely and severe the risk is, and then decide what measures should be in place to effectively prevent or control the harm.

Regulations Reference

ICH Q9 Quality Risk Management - Regulatory Perspective

- Integrated quality management
- Regulatory operations
- Development
- □ Facilities, equipment, utilities
- Materials management
- Production
- Laboratory control and stability studies
- Packaging and labeling

- System Risk (facility & people)
 - e.g., interfaces, operators risk, environment, components such as equipment, IT, design elements
- System Risk (organisation)
 - e.g., Quality systems, controls, measurements, documentation, regulatory compliance
- Process Risk
 - e.g., process operations and quality parameters
- Product Risk (safety & efficacy)
 - e.g., quality attributes: measured data according to specifications

Regulations Reference

Guidance for Industry Analytical Procedures and Methods Validation for Drugs and Biologics

Additional copies are available from: Office of Communications Division of Drug Information, WOS1, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Silver Spring, MD 20993 Phone: 301-796-3400; Fax: 301-847-8714 druginfo@fda.hhs.gov

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 ocod@fda.hhs.gov http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (Tel) 800-835-4709 or 301-827-1800

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> > February 2014 CMC

Regulations Reference

Analytical procedures verification or validation data should be submitted in the corresponding sections of the application in the ICH M2 eCTD: Electronic Common Technical Document Specification.¹¹

87 When an analytical procedure is approved/licensed as part of the NDA, ANDA, or BLA, it 88 becomes the FDA-approved analytical procedure for the approved product. This analytical

procedure may originate from FDA recognized sources (e.g., a compendial procedure from the

90 United States Pharmacopeia/National Formulary (USP/NF)) or a validated procedure you

submitted that was determined to be acceptable by FDA. To apply an analytical method to a

92 different drug product, appropriate validation or verification studies for compendial procedures

93 with the matrix of the new product should be considered.

94

85 86

95 96

III. ANALYTICAL METHODS DEVELOPMENT

An analytical procedure is developed to test a defined characteristic of the drug substance or
drug product against established acceptance criteria for that characteristic. Early in the

development of a new analytical procedure, the choice of analytical instrumentation and

101 methodology should be selected based on the intended purpose and scope of the analytical

method. Parameters that may be evaluated during method development are specificity, linearity,

103 limits of detection (LOD) and limits of quantitation (LOQ), range, accuracy, and precision.

104

105 During early stages of method development, the robustness of methods should be evaluated

106 because this characteristic can help you decide which method you will submit for approval.

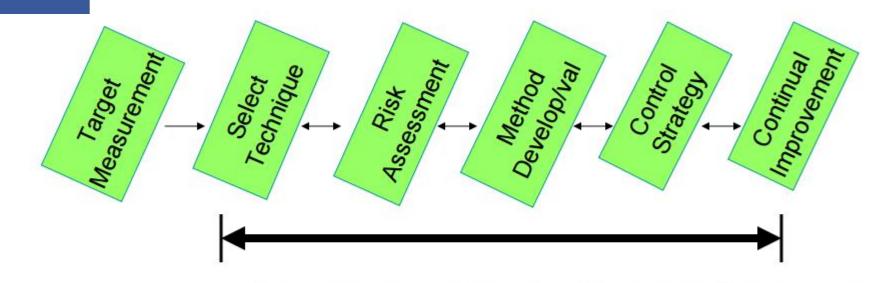
107 Analytical procedures in the early stages of development are initially developed based on a

108 combination of mechanistic understanding of the basic methodology and prior experience.

109 Experimental data from early procedures can be used to guide further development. You should

submit development data within the method validation section if they support the validation of

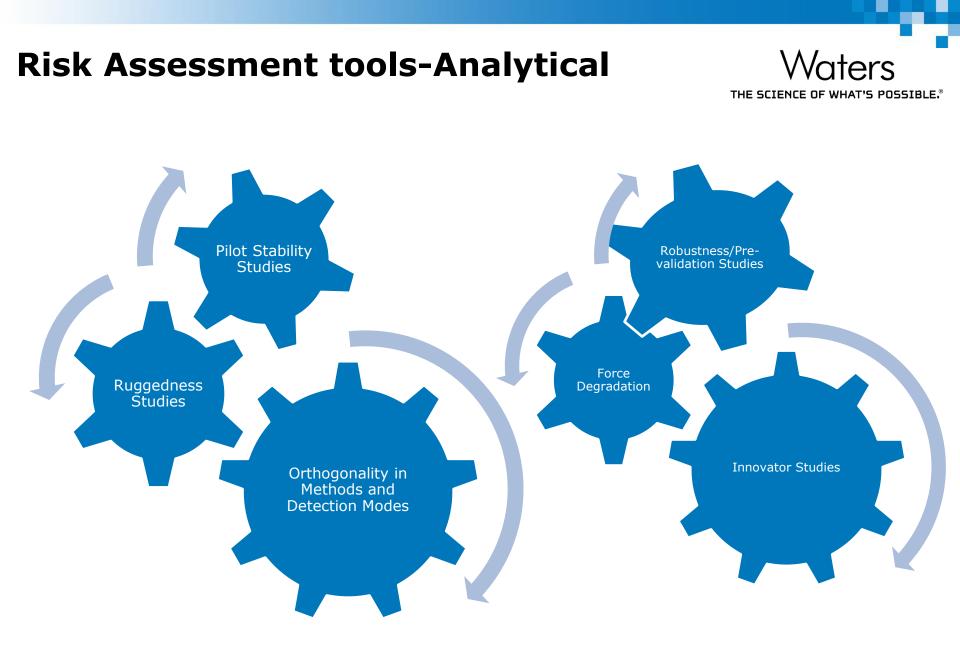
111 the method.


112

113 To fully understand the effect of changes in method parameters on an analytical procedure, you should adopt a systematic approach for a method robustness study (e.g., a design of experiments 114 115 with method parameters). You should begin with an initial risk assessment and follow with multivariate experiments. Such approaches allow you to understand factorial parameter effects 116 on method performance. Evaluation of a method's performance may include analyses of 117 samples obtained from various stages of the manufacturing process from in-process to the 118 119 inished product. Knowledge gained during these studies on the sources of method variation can help you assess the method performance. 120 121 122

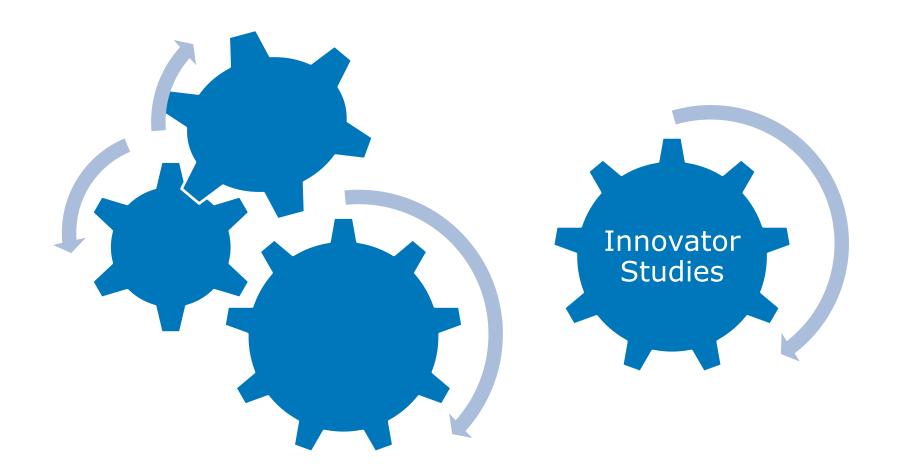
QbD based development

- Allow continual feedback and feed-forward interactions among all steps.
- Meet and maintain method performance criteria

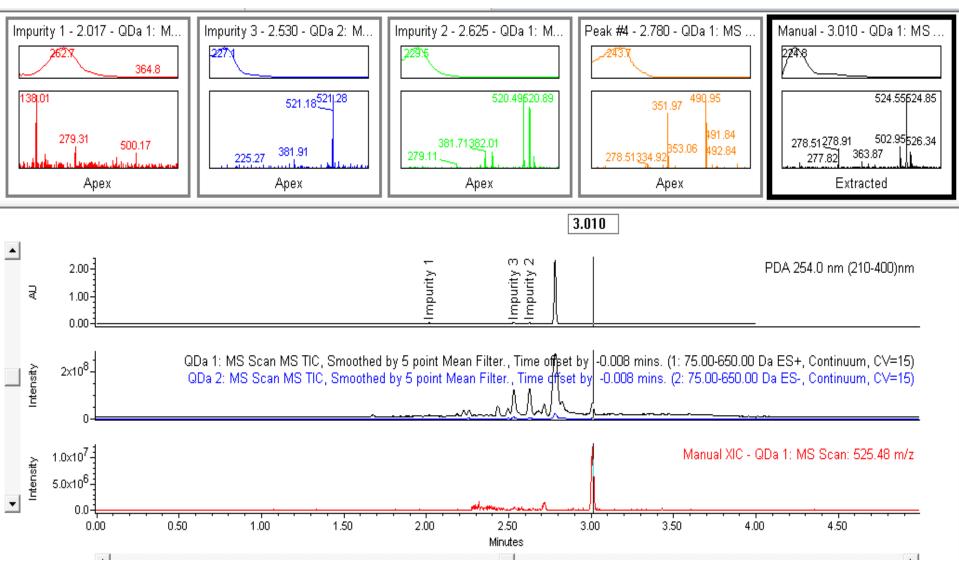


Define Risk Factor

Analytical Method and Risk Management

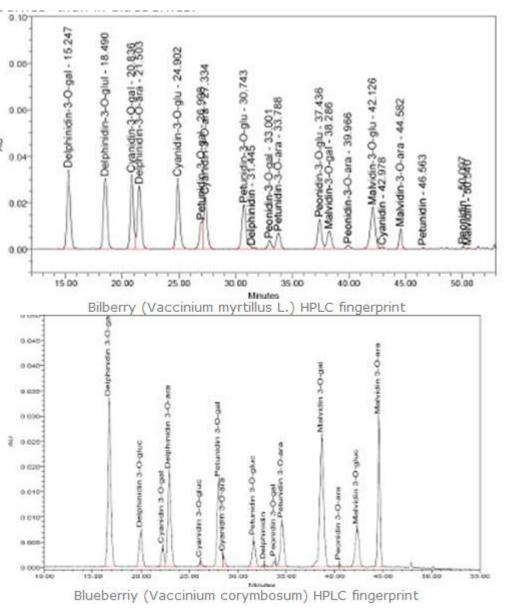

Risk Factor = Severity x Occurrence x Detectability

- Severity = Effect on Patient
 - Related to safety or efficacy (CQAs)
 - Different than impact of a manufacturing failure
- Likelihood of Occurrence = Chance of Failure
 - Related to product and process knowledge and controls
 - Includes uncertainty for new processes or process changes
- Detectability = Ability to Detect a Failure
 - Appropriateness and capability of analytical method
 - Sampling considerations



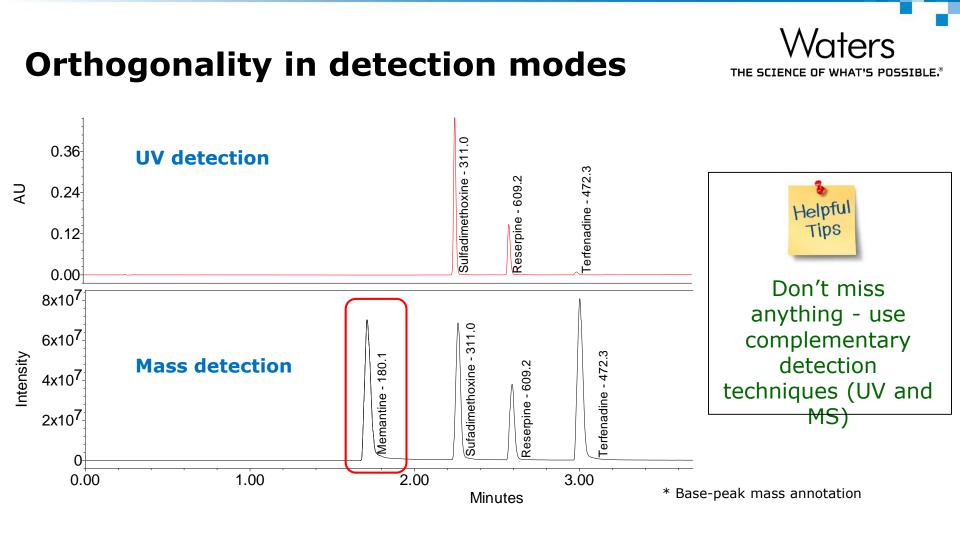
Risk Assessment tools-Analytical

Generating Chemical Equivalency data THE SCIENCE OF WHAT'S POSSIBLE."



©2017 Waters Corporation COMPANY CONFIDENTIAL

Vaters



Finger Printing the Product

©2017 Waters Corporation CON

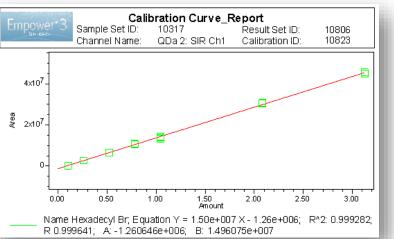
Waters **Risk Assessment tools-Analytical** THE SCIENCE OF WHAT'S POSSIBLE.® Orthogonality in ethods and Detection Modes

Memantine has no chromophore and requires alternate detection techniques to UV

 NH_2

Detection, What can analytical scientists do !

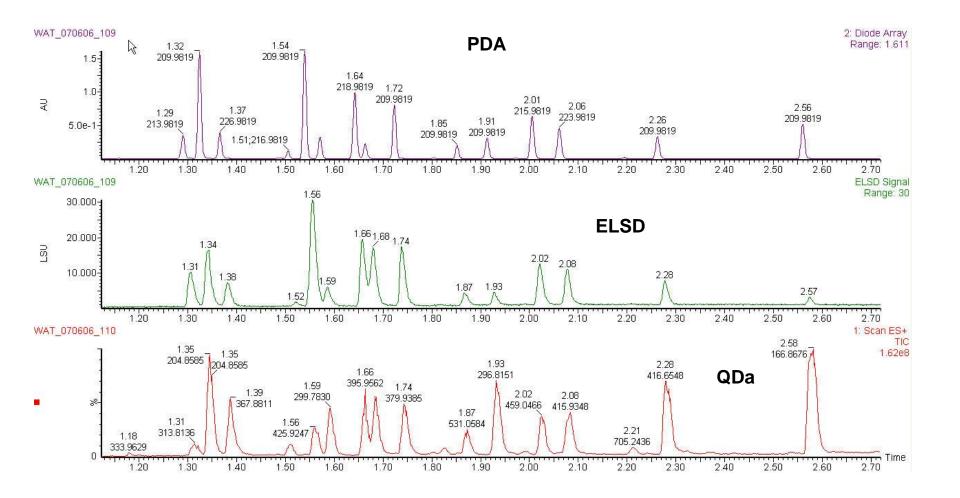
- UV good sensitivity, precision, limited selectivity and qualitative, good diagnostic tool.
- PDA good sensitivity, precision, qualitative information, peak purity, diagnostic tool.
- ELSD universal response, complimentary to PDA or UV, high throughput, no qualitative.
- QDa excellent selectivity, lead time, sensitivity, qualitatively superior, higher cost, highly versatile with detection options and info acquired.


High confident data in one injection !

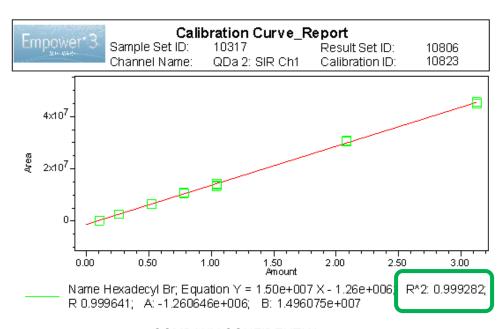
Bringing in Next level of PDA detection Sensitivity of Mass and Simplicity of UV/PDA detector

THE SCIENCE OF WHAT'S POSSIBLE.®

aters



Data: PDA/ELSD/QDa

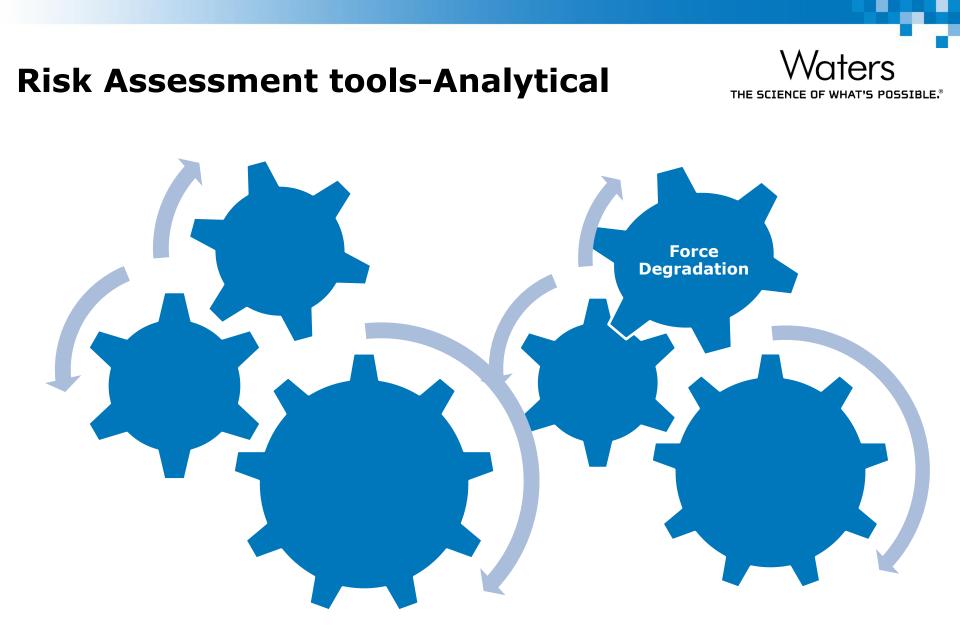


High confident data in one injection !

Those who can use PDA can use QDa

Profile and quantify more analytes....

- Easy to use, robust mass detection allows quick and reproducible analysis
- Affordable and low running cost
- Readily deployable in QC environment-Easy and Compliant

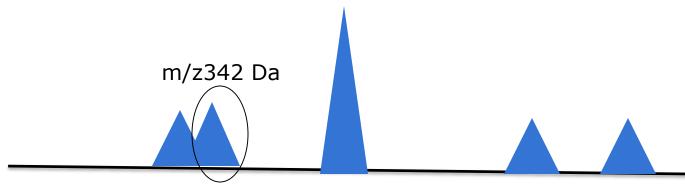


	System Sui	tability Report 2
Empower'3	Sample Set ID:	2565
SCFTVIARE	Result Set ID:	6781
	Channel Name:	QDa 2: SIR Ch1

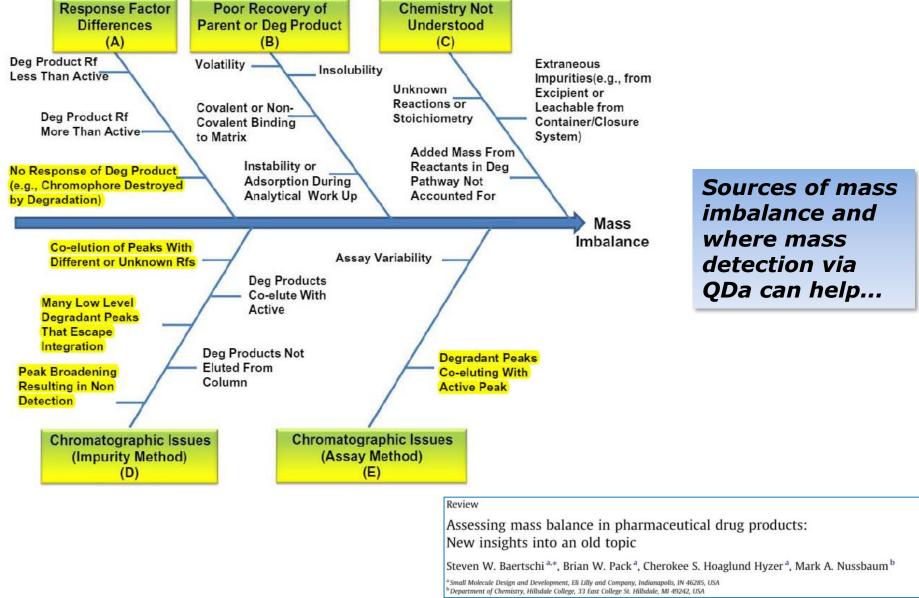
Name: Cetrimonium Br

	Name	Inj	RT	Area	USP Tailing	K Prime
1	Cetrimonium Br	1	1.086	132801434	1.1	3.3
2	Cetrimonium Br	2	1.085	132176370	1.1	3.3
3	Cetrimonium Br	3	1.084	133458598	1.1	3.3
4	Cetrimonium Br	4	1.084	133265613	1.1	3.3
5	Cetrimonium Br	5	1.082	130749136	1.1	3.3
6	Cetrimonium Br	6	1.082	130945752	1.1	3.3
Mean			1.084	132232817	1.1	3.3
Std. Dev.			0.002	1162201.831		
% RSD			0.16	0.88		
					J	

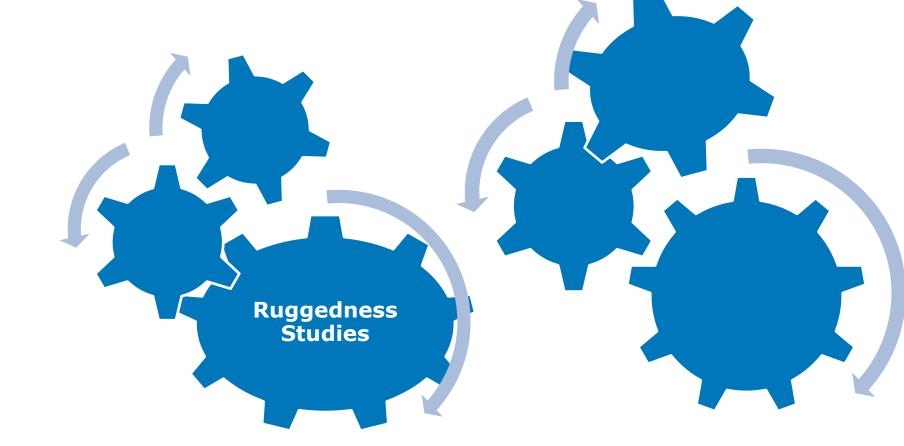
THE SCIENCE OF WHAT'S POSSIBLE."



Reporting Force degradation studies

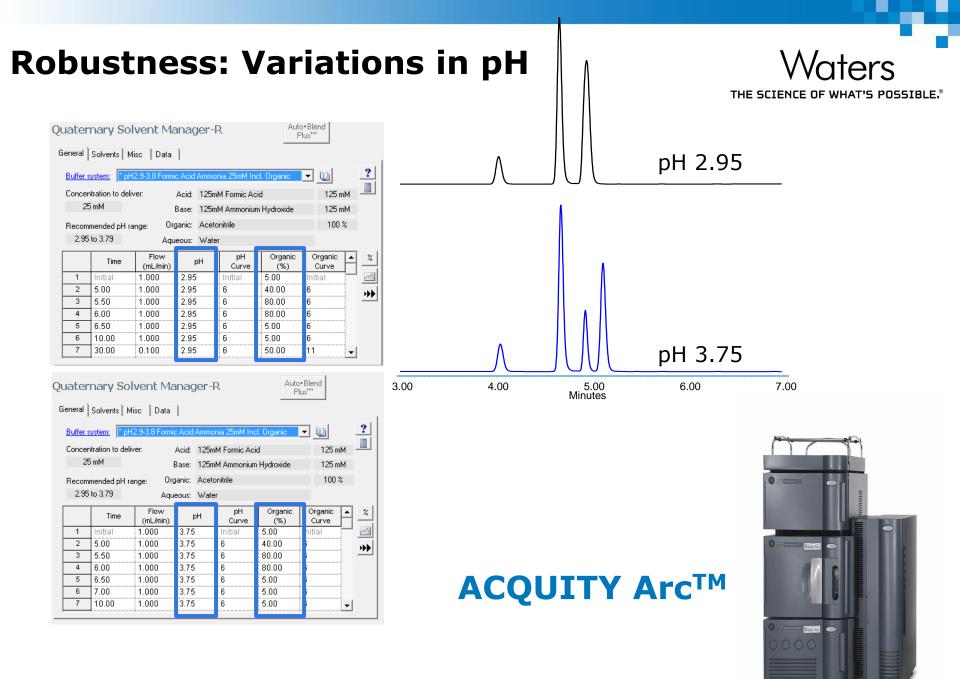

	adation type: sed 60°C/0.1N	HCI		adation type: sed 60°C/0.1N NaOI	4
RRT	λmax/Mass	Туре	RRT	λmax/Mass	Туре
0.6	298nm/324Da	Process	0.6	298nm/324Da	Process
0.65	285nm/342Da	Degradation	0.7	285nm/347Da	Degradation
1.2	280nm/392Da	Degradation	0.8	289nm/356Da	Degradation
1.8	278nm/442Da	Process	1.2	280nm/392Da	Degradation
2.2	269nm/452Da	Degradation	1.8	278nm/442Da	Process
2.25	289nm/469Da	Process	2.25	289nm/469Da	Process

Stability 40°C/75%RH 12 Months, HDPE Bottle

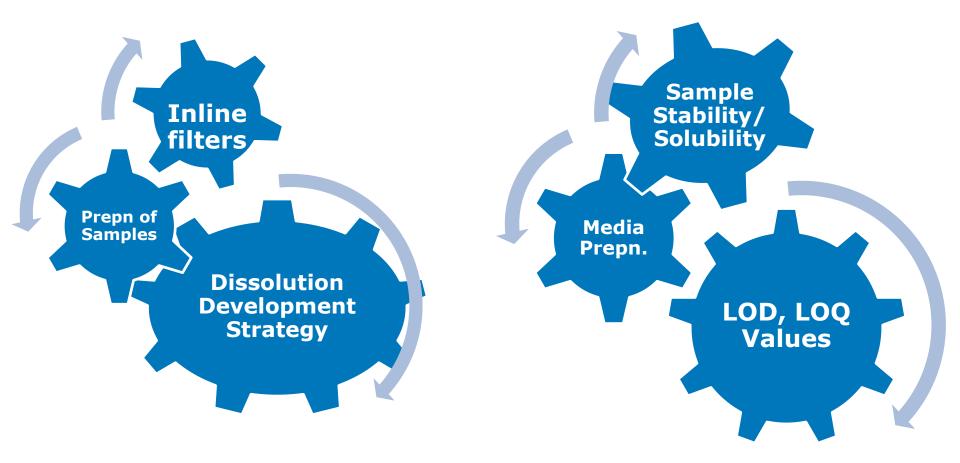

ACQUITY QDa for mass balance studies.... Waters

THE SCIENCE OF WHAT'S POSSIBLE.®

Risk Assessment tools-Analytical

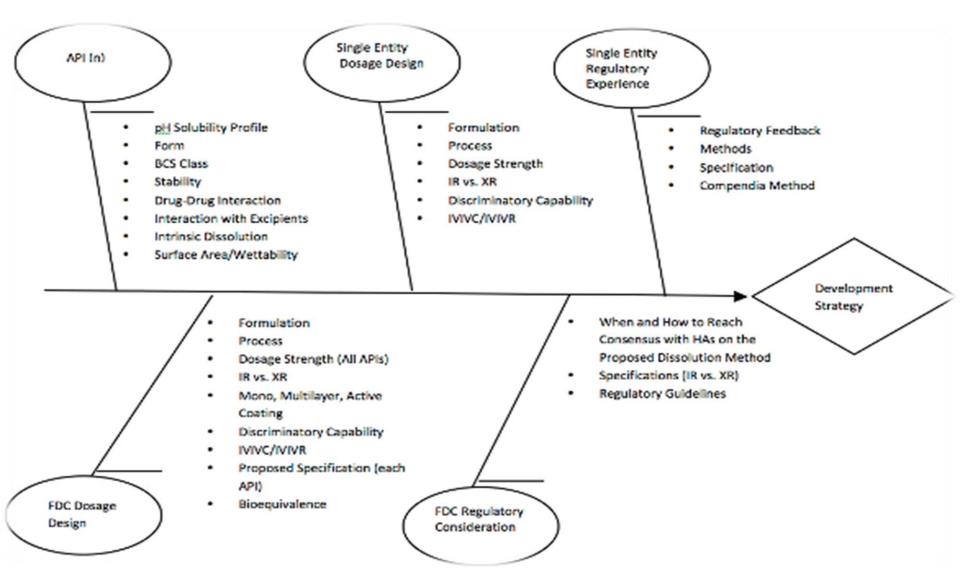

Robustness & Ruggedness

- Degree of reproducibility of test results under a variety of conditions
 - Different Laboratories
 - Different Analysts
 - **o** Different Instruments
 - Different Reagents
 - o Different Days
 - Etc.
- Expressed as %RSD

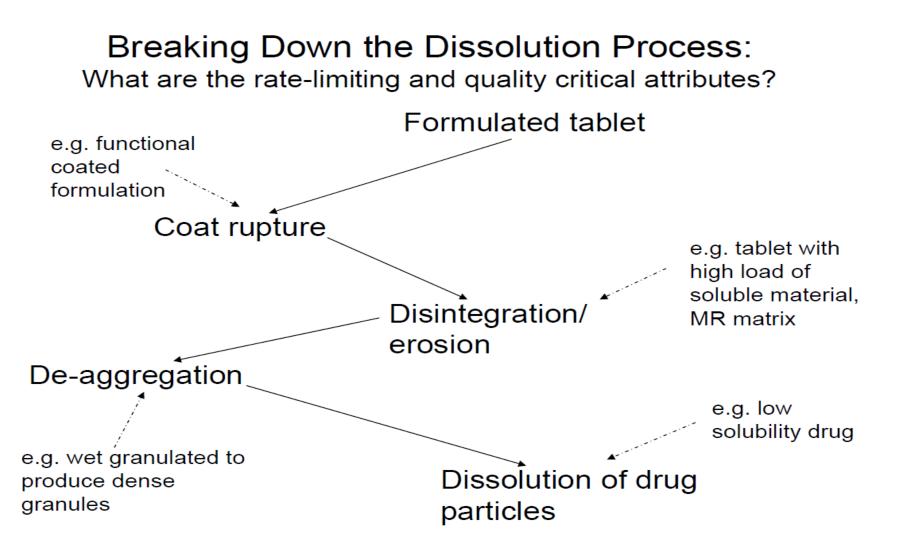

Typical variations in LC

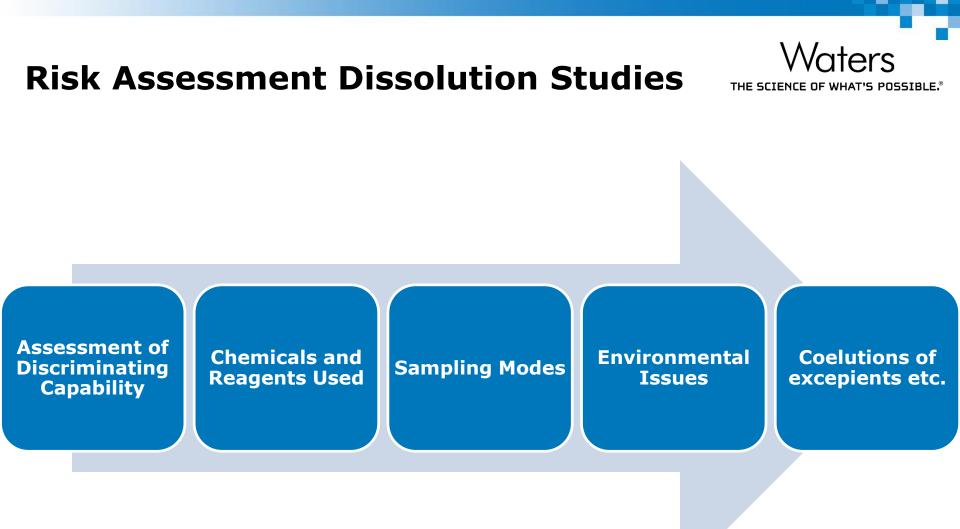
- □Variations of pH
- □Variations in mobile phase
- Different columns
- Temperature
- Flow rate

Risk Assessment Dissolution Studies



Dissolution Method Development


THE SCIENCE OF WHAT'S POSSIBLE.®


Waters

Risk Assessment for Discriminating Capability

Waters THE SCIENCE OF WHAT'S POSSIBLE."

	Table 2. Example	Risk Assessme	ent of Dissolution Discrimina	ting Capability			
Risk	Impact	Risk Rating	Range Studied	Discriminating Results			
API particle size	Large particle size may affect content uniformity and provide slow dissolution	Low	API particle sizes (D90): Compound A: 70 – 150 µm Compound B: 40 – 120 µm	Discriminating capability was demonstrated on the low and high end of the particle size for both compounds A and B.			
Formulation composition	Operator error in material charging may alter the formulation significantly.	Medium	Disintegrant (intra-granule): 1.0% - 5.0% (Target: 3.0%)	Discriminating capability was demonstrated.			
Lubrication process	Over lubrication may cause dissolution slow down	Medium	Lubricant: 0.5% - 1.5% (Target: 1.0%) Blending time: 2 - 6 minutes (Target: 4 minutes)	Discriminating capability was demonstrated.			
Roller Compaction parameters	The parameters can impact the granule hardness and size and consequently may impact dissolution.	Medium	Within the control limit: Roll Pressure: 40 ± 10 Bar Roll Gap: 2.2 ± 0.4 mm	Discriminating capability was demonstrated at the edge of the control limits.			
Tablet Compression	Tablet hardness may impact dissolution	Low	Within the control limit: Tablet Hardness: 30 ± 5 SCU	Discriminating capability was demonstrated at the edge of the control limits.			

Risk assessment also includes identifying potential risk factors that could critically impact the robustness and discriminating capability of the method.

Failure Mode and Effect Analysis (FMEA) could be used as an effective tool in identifying potential critical factors, impact of failures and cause of failure, and ranking the risks so that poor method performance could be proactively prevented.

©2017 Waters Corporation COMPANY CONFIDENTIAL

Rating Risks and Prioritization

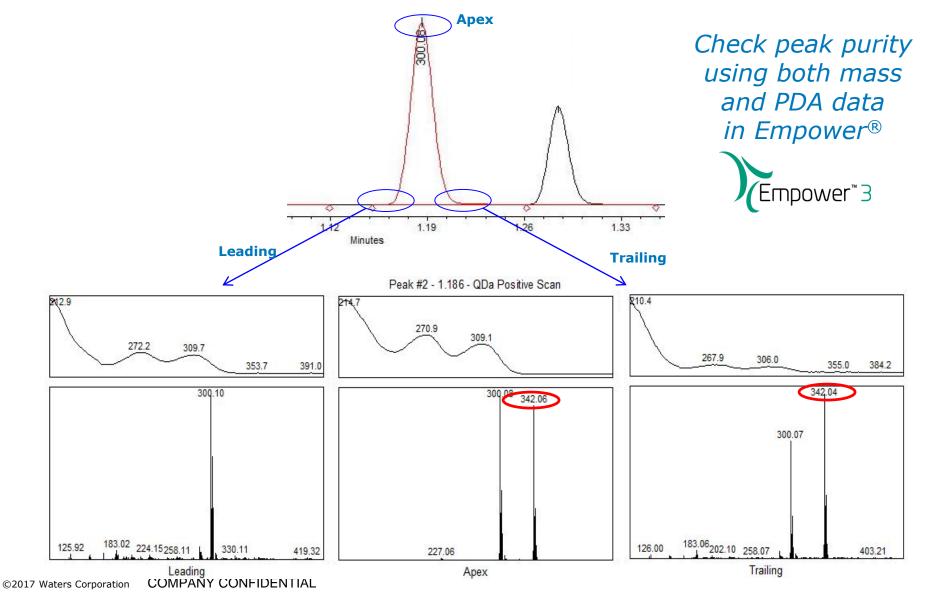
Categ	gory	Var	iable	C	lass			
Measur	ement	UV Wavelength	ו		Х			
Meth	nod	Media – acid co	oncentration		Х			
Enviror	nment	Ambient laborator	y conditions		Ν			
Meth	nod	Add organic to	Add organic to dissolve std					
Mater	rials	Surfactant supp	lier		N			
Meth	nod	Paddle rotation Experimental Lin. Acc. Prec. Sco		Score	Rank			
Meth	nod	UV recirculation	UV recirculation Parameter				(sum)	
			Media Acid Conc.	7	9	5	21	Н
	Controlled (C)		Surfactant Conc.	3	7	3	13	М
	Experime Noise (N	· · ·	Mobile Phase Org.	7	7	5	19	Н
			Column Temp.	5	3	5	13	М
			Sample Volume	3	5	3	11	L
			Paddle Speed	?	?	?	?	?

- r

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Creating Control Document

Parameter	Impact on Method Performance	Rationale for Impact Assessment	Classification	Design Space	Suggested Action
HCI Concentration	Yes	Affects % dissolved and discrimination between batches	В	± 10% from nominal	Ensure HCI concentration is in range.
Tween Concentration	en Concentration Yes Affects % dissolved and discr en Concentration Yes Affects % dissolved and discr cell Pathlength Yes Variation in pathlength can re inaccurate results. Use of 5 d apparatus in ruggedness exe produced negligible variation dard Preparation Yes Inadequate standard dissolution produce inaccurate results. inique Yes Standard solution degrades upper standard solution		В	± 5% from nominal	Ensure Tween concentration is in range.
Method Performance Mathod Performance ICI Concentration Yes Affect between Tween Concentration Yes Affect between Flowcell Pathlength Yes Variat inacci appar produ Standard Preparation Fechnique Yes Inade produ Standard Weighing Technique Yes Stand exten boat. Multidose Apparatus No Use of rugge neglig Tween Manufacturer, Grade, Lot No Samp opera exercite result		Variation in pathlength can result in inaccurate results. Use of 5 different apparatus in ruggedness exercise produced negligible variation in results.	\pm 2% from nominal	Ensure that flowcell pathlength is within range.	
Standard Preparation Technique	Yes	Inadequate standard dissolution can produce inaccurate results.	D	Operator must ensure that all standard is dissolved before proceeding.	Method revised to include a different validated standard preparation technique.
Standard Weighing Technique	Yes	Standard solution degrades upon extended contact with aluminium weigh boat.	D	Operator must not immerse or store aluminium weight boat in standard solution.	Method revised to exclude extended storage of standard solutions containing aluminium weigh boats.
Multidose Apparatus	No	Use of 5 different apparatus in ruggedness exercise produced negligible variation in results.	с	Any	None
Tween Manufacturer, Grade, Lot	No	Sample preparation by 5 different operators at 3 sites in ruggedness exercise produced negligible variation in results.	E	Any	None
Environment	No	Use of 5 different apparatus at 3 sites in ruggedness exercise produced negligible variation in results.	С	Any	None
Operator	No	Use of 6 different operators in ruggedness exercise produced negligible variation in results.	С	Any	None ²


Creating Control Document

	Empower".	Sample Set ID: Result Set ID: Processed Chan	4001 6805	S C O cr.: PD4			REPO Run Time Injection V	:	7.0 Mi 1.00 u	
	Sample	Column	Strong Solvent	рН	Total Peaks	Total Peaks Rs >=2.0	Total Peaks Tailing <=1.5	Lowest Rs	Min k*	RT of Last Pea
1	Low pH, MeOH	CSH C18	MeOH	Low pH	9	7	7	1.283	3.22	3.11
2	Low pH, ACN	CORTECS C18+	ACN	Low pH	9	7	5	0.769	1.98	2.15
3	Low pH, ACN	CSH C18	ACN	Low pH	9	5	7	2.308	2.15	2.30
4	Low pH, MeOH	CORTECS C18+	MeOH	Low pH	8	7	3	2.094	2.99	2.98
5	Low pH, MeOH	CSH Phenyl Hexyl	MeOH	Low pH	8	6	8	1.690	2.30	3.13
6	Low pH, ACN	CSH Phenyl Hexyl	ACN	Low pH	8	5	5	0.654	0.98	2.21
7	Low pH, MeOH	HSS PFP	MeOH	Low pH	8	2	2	1.870	6.86	3.44
8	Low pH, ACN	HSS PFP	ACN	Low pH	7	2	2	0.108	4.51	2.61
8	Low pH, ACN	HSS PFP	ACN	Low pH	7	2	2	0.108	4.51	2.61
7	Low pH, MeOH	HSS PFP	MeOH	Low pH	8	2	2	1.870	6.86	3.44
ers	Corporation COM	PANY CONFIDENTIA	105 200							

Risk Assessment for Coelutions

And Finally....

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Contact Details

Email: manu_grover@waters.com Mobile:+91-96327-86940 Or on Linkedin