Effect of Surface Anisotropy of Crystal Habits on Dissolution Performance

Dr Arvind Kumar Bansal

Professor and Head

Department of Pharmaceutics

National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India

Flow of Presentation

Effect of Solid Form on Solubility and Dissolution

6	1
_	-
2	

Parameters	Salt	Polymorphs	Amorphous	Co-crystal
Solubility	2 - 1000 个	2-3 1	4 - 14 ↑	4- 20 ↑
Dissolution rate	1	1	1	1

Quality, safety and efficacy of BCS class II and IV drugs can be sensitive to their solid forms

ICH HARMONISED TRIPARTITE GUIDELINE

SPECIFICATIONS: TEST PROCEDURES AND ACCEPTANCE CRITERIA FOR NEW DRUG SUBSTANCES AND NEW DRUG PRODUCTS: CHEMICAL SUBSTANCES

Q6A

Solid forms (Polymorph, Pseudo-polymorph and Amorphous form) should be monitored and controlled

Crystal Habit: External Appearance of Crystal

Description of crystal habits (USP)

Equant	Columnar	Tabular	Plate
Ne	edle		Blade

Can two different crystal habits of the same polymorph of an API

show different dissolution behavior?

Crystal Habit: Literature References

It was postulated that the differences in dissolution behavior of different crystal habits of Aspirin could be due to (1) differences in dissolution velocity of different crystallographic facets and (2) their relative exposure on crystal surface

A Case study - Celecoxib

Physico-chemical properties of Celecoxib

- BCS class II drug, first COX-2 selective inhibitor (375-fold selectivity)
- Crystalline form III used in Celebrex[®] (Pfizer)

Properties	CEL
Description	White to off-white crystalline
	powder
Melting point (°C)	Form III: 159-162
р <i>К</i> _а	11.1 (weak acid)
Log P	3.5
Solubility	Practically insoluble in water
	(~ 3.7 μg/mL)
Dissolution Time (T _{disso})	7238.1 min
Absorbable Dese (D_)	7.4 mg
Absorbable Dose (D _{abs})	/.4 mg
Strength (mg)	100, 200 and 400

Celecoxib (CEL) has solubility and dissolution rate limited oral bioavailability

Kasim et. al., Mol. Pharm. 1: 85-96 (2003).

Role of crystal habits on solubility and dissolution performance

Generation and Characterization of CEL Crystal Habits

Aspect ratio: 4-8

Sample	Melting point (°C) (n = 3)	Heat of fusion (J/g) (n = 3)	True density (g/mL) (n = 3)
CEL-A	162.01 ± 1.82	90.19 ± 0.59	1.521 ± 0.03
CEL-P	161.13 ± 1.13	91.03 ± 2.08	1.522 ± 0.04

DSC and PXRD analysis revealed same polymorph (Form III) for both CEL samples

Solubility and Dissolution Behavior

Sample	D ₁₀ (μm)	D ₅₀ (μm)	<i>D₉₀</i> (μm)	Specific surface area (m²/g) (n = 3)
CEL-A	158.5	200.4	251.3	0.93 ± 0.01
CEL-P	162.8	198.5	256.4	0.87 ± 0.04

Solubility Study Parameters		
Apparatus	Shaker water bath	
Media	pH 12 phosphate buffer	
RPM	100	
Temperature	37 ± 0.5 °C	

Intrinsic Dissolution Rate (IDR) pH 12 phosphate buffer

CEL-P exhibited significantly faster dissolution kinetics and higher IDR in aqueous media as compared to CEL-A

Wettability and Surface Free Energy

12

Sessile Drop Contact Angle Technique

		Contact Angle (°)			Surface free energy (mJ/m ²)		
Sample	Water	pH 12 phosphate buffer	EG	DIM	Total	Dispersive	Polar
CEL-A	$102.0^{\circ}\pm0.7^{\circ}$	$94.5^\circ \pm 1.2^\circ$	$72.1^\circ \pm 0.8^\circ$	$20.8^\circ\pm2.0^\circ$	47.93	47.54	0.81
CEL-P	91.5° ± 1.3°	85.3° ± 1.8°	66.4° ± 2.2°	27.8° ± 0.6°	47.10	45.10	2.65

CEL-P exhibited better wettability with aqueous media and higher polar component of surface free energy. This could be due to higher exposure of hydrophilic elements on its surface

EG: Ethylene glycol, DIM: Di-iodomethane

Face Indexation Study

- The term **facet** refers to the **flat surface** of a crystal
- Chemical environment of each facet of a crystal is different

The work was carried out at University of Minnesota (USA), in collaboration with Dr Calvin Sun

Surface Characterization

X-Ray Photoelectron Spectroscopy

CEL-P exhibited higher surface exposure of hydrophilic elements like oxygen, nitrogen and sulphur while CEL-A exhibited higher surface exposure of hydrophobic elements like carbon and fluorine

EG: Ethylene glycol, DIM: Di-iodomethane

Despite of having **similar polymorphic form** and powder surface area, CEL-P exhibited significantly faster dissolution kinetics than CEL-A in aqueous media due to **higher exposure of relatively** hydrophilic facet (0 1 0) as against relatively hydrophobic facet (0 0 1)

Solubility and dissolution performance of milled Crystal Habits

Reduction of Particle Size - Milling

- 1. There is no alteration in solid form of both CEL crystal habits even after milling
- 2. DSC and PXRD analysis revealed same polymorph (Form III) for both the milled CEL samples

Solubility and Dissolution Behavior

Milled fractions of both the crystal habits did not show significant differences in dissolution kinetics and had similar IDR

Surface Characterization

20

Sessile Drop Contact Angle Technique

	Contact Angle (°)			Surface free energy (mJ/m ²)			
Sample	Water	pH 12 phosphate buffer	EG	DIM	Total	Dispersive	Polar
CEL-A	$102.0^\circ\pm0.7^\circ$	$94.5^\circ \pm 1.2^\circ$	$72.1^\circ \pm 0.8^\circ$	$20.8^{\circ}\pm2.0^{\circ}$	47.93	47.54	0.81
MCEL-A	$96.6^\circ \pm 0.8^\circ$	$93.4^\circ \pm 1.7^\circ$	$70.4^{\circ} \pm 1.6^{\circ}$	$27.8^\circ \pm 1.0^\circ$	46.64	45.10	1.56
CEL-P	91.5° ± 1.3°	85.3° ± 1.8°	66.4° ± 2.2°	27.8° ± 0.6°	47.10	45.10	2.65
MCEL-P	101.0° ± 1.2°	97.1° ± 2.3°	74.2° ± 1.4°	18.2° ± 0.4°	49.44	48.29	1.48

MCEL-A and MCEL-P exhibited similar wetting properties with aqueous media and similar polar component, though different dispersive component of surface free energy

X-Ray Photoelectron Spectroscopy

Sample	% Atomic composition							
	O 1s	O 1s N 1s S 2p F 1s C 1s						
CEL-A	8.48	10.51	10.70	10.12	60.17			
MCEL-A	9.09	10.92	8.40	10.89	60.70			
CEL-P	9.25	13.13	11.72	10.47	55.41			
MCEL-P	8.54	10.13	7.48	12.72	61.13			

EG: Ethylene glycol, DIM: Di-iodomethane

CEL-A

CEL-P

(100)Milling preferentially occurs along shortest axis, perpendicular to their cleavage plane (0-20) Milling preferentially occurs through cleavage plane (0 2 0)

Milling of acicular crystals : **exposure of hydrophilic and hydrophobic moieties** remained largely unaltered

Milling of plate shaped crystals: increases exposure of hydrophobic moieties on the surface

Drug product performance containing milled Crystal Habits

Celecoxib Capsules

Qualitative and Quantitative Composition

Component	Function	Quantity (mg)
Celecoxib	Active ingredient	200
Lactose monohydrate	Diluent	45
Povidone	Binder	1.5
Sodiun lauryl sulfate	Wetting agent	15
Cross carmellose	Disintegrant	10
Magnesium stearate	Lubricant	3.5

In Vitro Dissolution Study

25

Dissolut	80		
Apparatus	70 -		
Media	pH 12 phosphate buffer	60 -	
Volume	500 mL (@ 37 ± 0.5 °C)	p 50 -	
RPM	100	ossip 40 -	
Volume withdrawn	2 mL	0, 20 S	
Analytical method	HPLC	20 -	

- **1.** Significant differences were observed in dissolution profiles of CEL capsules of milled fractions of two different crystal habits
- 2. Surprisingly, milled fraction of CEL-P showed decreased dissolution kinetics when compared with milled CEL-A in capsule dosage form

Quality by Design - Risk Assessment

Critical Material Attributes (CMAs) and Critical Process Parameters (CPPs)

Final Equation in Terms of Coded Factors

Similarity factor = $47.03 - (1.57* \text{ A}) - (3.83* \text{ B}) + (0.24* \text{ C}) - (5.77* \text{D}) + (0.50* \text{ AB}) + (0.31* \text{ AC}) + (2.26* \text{ AD}) - (1.68* \text{ BC}) + (0.49* \text{ BD}) + (0.31* \text{ CD}) - (5.39* \text{ A}^2) - (1.39* \text{ B}^2) + (3.11* \text{ C}^2) + (1.11* \text{ D}^2)$

Code	Factor/Factor interactions	p-value Prob > F	Effect on similarity factor
Α	Particle size	0.0027	Negative
В	Surfactant concentration	< 0.0001	Negative
С	Lubricant concentration	0.6171	No significant effect
D	Lubricant mixing time	< 0.0001	Negative
AB	Particle size + Surfactant concentration	0.3213	No significant effect
AC	Particle size + Lubricant concentration	0.5311	No significant effect
AD	Particle size + Lubricant mixing time	0.0001	Positive
BC	Surfactant concentration + Lubricant concentration	0.0025	Negative
BD	Surfactant concentration + Lubricant mixing time	0.3323	No significant effect
CD	Lubricant concentration + Lubricant mixing time	0.5323	No significant effect

- 1. Particle surface interaction with excipients like surfactant and / or lubricant (because both of them act on surface of particle) can be possible and
- 2. Lubricant mixing time plays significant role in interaction between particle surface and lubricant

Performance of Unmilled and milled Crystal Habits

- This study demonstrated contribution of crystal habits on differential surface anisotropy leading to differences in pharmaceutical behavior
- Crystal habit can be an important material property and shall encourage the pharmaceutical industry to go beyond conventional material properties like polymorphism and understand contribution of crystal habits on product performance of BCS class II drugs
- This structure property relationship is a step forward towards expanding the knowledge space and thus helps in rationalizing development of a 'Control Strategy' for solid oral dosage forms to ensure the product quality

Acknowledgement

Dr Sameer Modi Graduated in 2016

Thank You... **

akbansal@niper.ac.in

- Milled fraction of CEL-P showed decreased dissolution performance when compared with milled fraction of CEL-A in capsule dosage form, though their powder dissolution profile and IDR did not show significant differences
- This counterintuitive dissolution behavior could be attributed to differential dispersive (nonpolar) component of surface free energy of milled fractions of different crystal habits along with
 - Particle surface interaction with excipients like surfactant and / or lubricant (because both of them act on surface of particle) and
 - 2. Variable processing parameters like lubricant mixing time

Quality by Design (QbD)

Risk Assessment – Risk Identification

Failure Mode Effect Analysis (FMEA)

Risk Priority Number (RPN) = Severity X Occurrence X Detectability

Sr. No.	Parameters	Severity	Detectability	Occurrence	RPN	Cum	% Cum	Comments
1	Crystal size	5	3	5	75	75	17.5	10-250 μm (Lower and higher limits)
2	Surfactant concentration	5	3	5	75	150	35.0	0.5-5% (Lower and higher limits)
3	Lubricant concentration	5	5	3	75	225	52.4	0.25-5% (Lower and higher limits)
4	Lubricant mixing time	5	3	5	75	300	69.9	2-10 min (Lower and higher limits)
5	Crystal habit	5	3	5	75	375	87.4	We can not control crystal habit after particle size reduction
6	Blending time	3	3	3	27	402	93.7	15 min (Fixed based on prior knowledge)
7	Disintegrant concentration	3	3	3	27	429	100.0	10 mg (Fixed based on prior knowledge)

Cum: Cumulative, 5: High, 3: Middle and 1: Low

Experimental Design – Response Surface Method

			Input	variables		Despense
Std	Space type	A:Particle size (µm)	B: Surfactant concentration (%)	C: Lubricant concentration (%)	D:Lubricant mixing time (min)	(Similarity factor)
1	Factorial	10	0.000	0.250	2	60
2	Factorial	250	0.000	0.250	2	46
3	Factorial	10	5.000	0.250	2	51
4	Factorial	250	5.000	0.250	2	47
5	Factorial	10	0.000	5.000	2	63
6	Factorial	250	0.000	5.000	2	52
7	Factorial	10	5.000	5.000	2	45
8	Factorial	250	5.000	5.000	2	43
9	Factorial	10	0.000	0.250	10	39
10	Factorial	250	0.000	0.250	10	41
11	Factorial	10	5.000	0.250	10	37
12	Factorial	250	5.000	0.250	10	36
13	Factorial	10	0.000	5.000	10	42
14	Factorial	250	0.000	5.000	10	46
15	Factorial	10	5.000	5.000	10	34
16	Factorial	250	5.000	5.000	10	33
17	Center	130	2.500	2.625	6	48
18	Center	130	2.500	2.625	6	45
19	Center	130	2.500	2.625	6	47
20	Center	130	2.500	2.625	6	46
24		400				

Design Evaluation and Analysis

Degrees of Freedom (df) for Evaluation		Source	Sequential p-value	Lack of Fit p-value	Adjusted R-Squared	Predicted R-Squared	Comment
Model	14						
Residuals	22	Linear	< 0.0001	0.0018	0.7398	0.6815	
		251	0.0070	0.0117	0.0204	0 7400	
Lack of Fit	10	ZFI	0.0070	0.0117	0.8304	0.7408	
Pure Error	12	Quadratic	0.0020	0.1310	0.9042	0.7965	Suggested
Corr Total	36	Cubic	0.0623	0.6112	0.9383	0.7238	Aliased

36

ANOVA Summary

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	1804.16	14	128.87	25.28	< 0.0001	Significant
Lack of Fit	69.83	10	6.98	1.98	0.1310	Not significant

Regression Analysis

Parameter Value		Parameter	Value
Std. Dev.	2.26	R-Squared	0.9415
Mean	45.86	Adj R-Squared	0.9042
C.V. %	4.92	Pred R-Squared	0.7965

All the design evaluation parameters are within the acceptable range and/or limits

Factor Effects and Interactions – Contour Plots

37

This established 'stand alone' effect of each factor and interactions between them

ots

Quality Target Product Profile (QTPP)

QTPF	P Elements	Target Justification			
Dosage form		Capsule	Pharmaceutical equivalence requirement, same dosage form		
Dosage design		Immediate release	Immediate release Design needed to meet label claims		
Route of administration		Oral	Pharmaceutical equivalence requirement, same route of administration		
Dosage strength		200 mg	Pharmaceutical equivalence requirement, same strength		
Pharmacokinetics		Immediate release	Bioequivalence requirement		
		Enabling Tmax in 2.5 h or less Bioequivalent to RLD	Needed to ensure rapid onset and efficacy		
Stability		At least 24 month shelf life at room temperature	Equivalent to or better than RLD shelf-life		
Drug product quality	Physical attributes	Pharmacokinetics equivalence requirement: Must meet the same compendial or other			
attributes	Identification	applicable (quality) standards (i.e. identity, assay, purity and quality)			
	Assay				
	Content uniformity				
	Dissolution				
	Degradation products				
	Residual solvents				
	Water content				
	Microbial Limits				
Container closure system		Container closure system qualified as suitable for this drug product	Needed to achieve the target shelf-life and to ensure tablet integrity during shipping		
Administration /concurren	ce with labeling	Similar food effect as RLD	RLD labeling indicates that a high fat meal increases the AUC and Cmax by 8-12%.		
Alternative methods of adr	ninistration	None	None are listed in the RLD label		

Identify Critical Quality Attributes (CQAs)

39

Quality at drug	tributes of the product	Target	Is this a CQA	Justification
Appearance Color and s		Color and shape acceptable	No	Not directly linked to safety and efficacy.
		to patient. No visual		
Physical		capsule defects observed.		
attributes	Odor	No unpleasant odor	No	Not directly linked to safety and efficacy.
	Size	Similar to RLD	No	For comparable ease of swallowing and patient acceptance, the target for capsule
				dimensions is set similar to the RLD
Iden	tification	Positive for CEL	Yes*	Though identification is critical for safety and efficacy, this CQA can be effectively
				controlled and will be monitored at drug product release. Formulation and process
				variables do not impact identity. Therefore, this CQA will not be discussed during
				formulation and process development
Conten	t uniformity	Conforms to USP <905>	Yes*	Variability in content uniformity may affect safety and efficacy. However,
		uniformity of dosage units		formulation and process variables are unlikely to impacts this CQA because of high
				CEL content in final formulation.
Dis	solution	Should be similar as	Yes	Failure to meet dissolution specification can impact bioavailability. Both
		innovator product		formulation and process variables impact dissolution profile. This CQA will be
				investigated throughout formulation and process development.
Degrada	ition product	Any unknown impurity:	Yes*	Degradation product can impact safety. However, there was no evidence of
		NMT 0.2%		generation of any degradation products due to formulation and processing
		Total impurities: NMT 1.0%		variables.
Residu	ual solvent	USP <467> option 1	Yes*	Residual solvent can impact safety. However, no solvent is used in the drug product
				manufacturing process. Therefore, formulation and process variables are unlikely to
				impact the CQA.
Wate	er content	ntent NMT 4.0% w/w NO CEL is not sensitive to hydrolysis and moisture will not impact st		CEL is not sensitive to hydrolysis and moisture will not impact stability.
Microbial limit Meets relevant Yes* Non compliance with microbial limits will impact patient		Non compliance with microbial limits will impact patient safety. However, in this		
		pharmacopoeia criteria		case, the risk of microbial growth is very low because direct powder filling operation
				is utilized for this product. Therefore, this CQA will not be discussed in detail during
				formulation and process development

Design of experiments (DOE) is a systematic method to determine the relationship between factors affecting a process and the output of that process.

Experimental Validation of Model

Batch	Design variables Similarity factor (Response)		ponse) CI for Mean			99% of Population					
No	Α (μm)	B (%)	C (%)	D (min)	Predicted Mean	Predicted Median	Observed	95% CI low	95% Cl high	95% TI low	95% TI high
1	250	2.5	2.625	6	43	43	42	39	46	32	53
2	10	2.5	2.625	6	41	41	43	38	45	31	52
3	130	5.0	2.625	6	39	39	39	35	42	28	49

Interestingly, In capsule dissolution study...

41

Dissolution of CEL-A < Dissolution of CEL-P Dissolution of milled CEL-A > Dissolution of milled CEL-P

✓ The predicted (40) and experimentally observed (36) values for similarity factor were in

- Differential anisotropic surface chemistry of CEL crystal habits (Higher exposure of hydrophilic facet on CEL-P)
- Differential cleavage behavior of two CEL crystal habits (leading to hydrophobization of surface of milled CEL-P)
- Competitive particle surface interaction with surfactant and/or lubricant and
- Over lubrication due to excessive use of lubricant and/or higher lubricant mixing time

GastroPlus[™] Simulation Study

Parameter	Value
Molecular formula	$C_{17}H_{14}F_{3}N_{3}O_{2}S$
Molecular weight	381.373 g/mol
LogP	3.5
p <i>K</i> a	11.1
Human jejunal permeability (P _{eff})	2.21 X 10 ⁻⁴ cm/s
Dose	200 mg
Dose volume	250 mL
pH of the reference solubility	12
Solubility [*]	0.4 mg/mL
Mean precipitation time#	900 s
Drug particle density	1.52 g/mL
Diffusion coefficient [#]	0.6753 X 10 ⁵ cm ² /s
Body weight	70 kg
Simulation time	48 h
Clearance (Cl) [#]	8.9 L/h
Volume of distribution (Vd) [#]	0.035 L/kg
Compartmental rate constants#	K _{1/2} : 0.18753 h ⁻¹
	K _{2/1} : 0.10823 h ⁻¹
Solubility values in various	FaSSGE (pH 1.6): 0.0023 mg/ml
dissolution media [*]	FaSSIF-V2 (pH 6.5): 0.0153 mg/mL

*Shono et al, Eur J Pharm and Biopharm. 73: 107–114 (2009), [#]Predicted in PKPlus[®] module

Aspect ratio: 2-6

- Milled fraction of CEL-P showed decreased dissolution performance in clinically relevant dissolution medium as compared to milled fraction of CEL-A in capsule dosage form
- Differential **surface hydrophobicity coupled with other 'CMAs' and 'CPPs'** contributed to this counterintuitive behavior
- This work has successfully established 'stand alone' effect of each factor and interactions between them on dissolution performance of milled fractions of different crystal habits in capsule dosage form, using 'Design of Experiments (DoE)' approach
- This novel finding opens up crystal habit as a 'Critical Material Attribute' governing
 Critical Quality Attribute (CQA) of drug products containing BCS class II drugs

- PBPK model was developed for predicting pharmacokinetic parameters of Celecoxib capsule using GastroPlus[®] software
- It was found that phosphate buffer having pH 11 is clinically relevant dissolution media to predict pharmacokinetic parameters of Celecoxib
- It gives opportunity to evaluate role of milled fractions of both the crystal habits on dissolution behavior and predicting pharmacokinetic parameters in capsule dosage form

In Vitro Dissolution Study

- 1. Significant differences were observed in dissolution profiles of CEL capsules of milled fractions of two different crystal habits
- 2. Surprisingly, milled fraction of CEL-P showed decreased dissolution kinetics when compared with milled CEL-A in capsule dosage form
- **3.** Dissolution profile of milled CEL-A capsule matches with the dissolution profile of innovator capsule

Simulated Pharmacokinetic Profile in Human

CEL Formulation	AUC ₀₋₄₈ (ng.h/mL)	C _{max} (ng/mL)	T _{max} (h)
Innovator capsule	6323.1	661.51	1.92
Milled CEL-A capsule	6449.9	673.29	1.92
Milled CEL-P capsule	4799.2	512.25	1.98

Significant differences were observed in simulated pharmacokinetic parameters of CEL capsules of two milled fractions of different crystal habits

Individual Factor Effects

Significant Factor Interactions

