Quality by Design (QbD) More than Compliance – It is Survival

Vijay Kshirsagar TRAC Pharma Consulting

At Disso India, Sept 2015, Goa

Contents

- Paradigm Shift in dissolution requirements
- Some basics of QbD
- Knowledge Space
- CQA's of Product/Process/Method/Materials
- Risk Assessment
- DoE's Theory, Examples & Control Strategy
- Food for Thought

Where do we come from?

- 1980: What happened when the product failed in dissolution testing? It was dissolved forcefully.
- 2015: Now not only that product failure is a concern but variation at even one time point is a cause of concern?
- What has been the cause of this transformation?
- Can 6 or 12 tablets predict the dissolution of batch having 5 Lac tablets?

Driving Force Behind PAT & QbD

"Quality can not be tested into products; it has to be built in by design" (ICH Q8/ Q11 on product/ drug substance development)

What is Quality By Design ?

As per ICH Q8/Q11 :

"QbD is a systemic approach to development that begins with <u>predefined</u> <u>objectives</u> & emphasizes product & process <u>understanding</u> and process control, based on <u>sound</u> <u>science</u> & <u>quality</u> risk <u>management</u>."

Important References for QbD & PAT

ICH Q8(R₂): Pharmaceutical Development

- ICH Q9 : Quality Risk Management
- ICH Q10 : Pharmaceutical Quality System
- ICH Q11 : Development & Manufacture of DS

QbD, Buzz Word ? More chewed than swallowed ?

QbR of QbD

QbR : Question based Review :

- Is it difficult to follow? How to begin?
- Is it a very costly exercise?
- Is it mandatory?
- Can it be followed by small companies?
- To what extend PAT's are required?
- Is it only for Product Development?

Do you Have?

- On line Conductivity meters
- On line pH meters
- On line TOC Meters
- Temp record charts
- Continuous monitoring of temp/RH/Differential pressures
- Continuous Particle monitoring

QbD Approach (Important Stages)

Defining 4 D's

- Disintegration time is the time required for a dosage form to break up in to granules of specified size
- Dispersion is actually meant to distribute the mass evenly thus moving the mass from higher concentration to lower concentration
- Dissolution is the rate of mass transfer from a solid surface into the dissolution medium or solvent under standardized conditions
- Diffusion refers to the process by which molecules intermingle as a result of their kinetic energy of random motion.

Understanding Dissolution Science

- DisintegrationDispersionDissolution
- Diffusion

Sink Conditions

- Sink condition refers to the volume of medium which is at least three times that is required in order to form a saturated solution of API
- In the absence of sink conditions, investigate methods to enhance solubility, e.g. use of a surfactant
- If a surfactant is used, its concentration should be properly justified (e.g. <2% SLS).

Quality Target Product Profile

QTPP Element	Target	Justification
Dosage Form	Tablet	To match innovator
Dosage design	Immediate Release	To match innovator
Route of Admin.	Oral	To match innovator
Pharmacokinetics	Matching Cmax/Tmax	To pass BE studies
Container/Closure	Must provide adequate protection & Cost Efficient	For stability of product & financial viability of the firm
Stability	Stable for 36 Months	To match innovator
Score Line	To have a deep score	Tablet should break in 2 equal halves

QA's of API (Related to Dissolution)

Quality Attributes	Target	Is this CQA ?	Justification
Appearance	Color & Shape	No	Not linked to Safety & Efficacy
Assay & Particle Size	100% w/w & matching spread	Yes	Impacts dissolution
Moisture Content	< 0.5%	Yes Exceptions ?	Higher moisture leads to polymorphic change in some cases
Intrinsic Dissolution	NLT 80%(Q) in 20 Mts	Yes	Impacts Bioavailability of Drug Product
Individual unknown Impurities	NMT 0.1%	No	Does not impact dissolution of the API/Drug Product 16

QA's of DP (Related to Dissolution)

Quality Attributes	Target	Is this CQA ?	Justification
Score line	To have similar dissolution for 2 halves	Yes	Patient should get same drug content
Hardness	To have optimum hardness	Yes	To facilitate disintegration & dissolution of product
Content Uniformity	To have similar drug content in all units	Yes	Impacts dissolution

Establishing Better Linkage

DP CQAs Drug Substance Attributes

	Particle Size	Polymorphic Nature	Moisture Content
Assay	Medium	Low	High
CU	High	Low	Low
Dissolution	High	Medium	Low
Impurities	Low	Low	High

Risk Factors of Dissolution Testing

- Proper Deaeration of media
- Calibration of Apparatus
- Selection of filters
- •Finding out Discriminatory media
- •HPLC or UV method
- Collection of samples
- Result reporting
- Investigation of stability failures
- Method validation/ method verification
- In Vivo/ In Vitro correlation
- Let us learn from case studies!

Importance of Deaearation

	Aceclofenac Tablets 100mg							
		With degassing		<u>Without</u>	ng			
	Jar -1	98		99				
	Jar -2	97		86				
	Jar -3	102		94				
	Jar -4	94		104				
	Jar -5	98		92				
	Jar -6	99		98				
	RSD							
	Mean	98		96				
•	RSD	2.7 %	6	ó.5 %				

Importance of proper calibration

Bupren	orphi	ne tablets	8mg		
Jar -1	89				
Jar -2	86				
Jar -3	100	(Paddle wol	obling)		
Jar -4	91				
Jar -5	88				
Jar -6	87				

Importance of proper filter

Name	Losartan Potassium and Amlodipine tablets						
Dissolution Medium	Buffer pH 4.5						
Component	Losa	rtan Potass	sium	A	Amlodipine		
Type of filters used	NYLON	PTFE	PVDF	NYLON	PTFE	PVDF	
		% Release			% Release		
Tab 1	6	99	99	68	98	98	
Tab 2	16	103	102	69	101	97	
Tab 3	26	99	99	71	102	101	
Tab 4	33	98	100	77	99	102	
Tab 5	43	100	100	79	101	102	
Tab 6	47	102	102	81	99	101	
Mean	29	100	100	74	100	100	
SD	15.76	1.94	1.37	5.53	1.55	2.14	
% RSD	54.34	1.94	1.37	7.47	1.55	2.14	
Min	6	98	99	68	98	97	
Max	47	103	102	81	102	102	
Remarks	PVDF – Polyvinylidene fluoride membrane filter PTFE - Polytetrafluoroethylene membrane filter						

Deaeration Method

USP/BP: Heat the medium while stirring gently to filter having a porosity of 0.45 micron or less, with vigorous stirring, and continue stirring under vacuum for about 5 minutes. Other validated techniques for deaeration can be used .

IP too mentions the requirement of deaeration. How many of you have validated your Deaeration Technique?

Risk Assessment of Method (Scale of 1-5)

Risk	Probability	Severity	Detection	RPN
Improper IVIVC Correlation	3	5	4	60
Non discriminative method	3	4	3	36
Improper Deae- ration	3	3	3	27
Improper Filter	3	2	2	18

Prerequisite of successful DoE

- Basic statistical knowledge
- Specialized training on software
- Mimic the real life scenario
- Use similar equipments, Instruments in terms of MOC & principle of operation
- Similar measurement tools

Conventional v/s DoE approach

CONVENTIONAL APPROACH

- Changing one factor at a time.
- May not give real optimum output
- Leads to many experiments and little information.
- Variability may not addressed
- No quantification of interactions.

DOE APPROACH

- Changing all factors same time.
- Investigates entire region in a organized way & provide reliable basis for decision making.
- Provides more precise info. with fewer experiments.
- Variability is addressed
- Quantification of interactions.

Design of experiments (DoE)

Definition:

"A structured, organized method for determining the relationship between factors affecting a process and the output of that process."

Applications :

- Development of new products/processes/ analytical methods.
- Enhancement of existing products & processes.
- Screening important factors.
- Minimization of production costs & pollution
- Development of Analytical Methods

Steps involved in DOE

- <u>Define Factors</u> (material, process, equip./environment)
- <u>Define Responses</u> (critical quality attributes)
- Create Design
- Construct Model
- Evaluate Model
- Interpret & Use Model (Make Decisions)

Process Attributes

- Qualitative and quantitative excipient changes
- Manufacturing parameters
 - Granulation
 - Lubrication
 - Blend time
 - Compression force
 - Drying parameters

SOME DOE EXAMPLES (CREATED ON PAPER JUST FOR ILLUSTRATION)

Dissolution Design of Experiments

Control Strategy

- Do extensive literature search
- Do not rely solely on Pharmacopeial/OGD methods
- Minimize the number of invalidated OOS's
- Do not over commit on the specifications
- Last but not the least, implement QbD
- But remember that it is not a magic stick

Food for thought ...

- Within specification Investigation?
- Am I crazy?
- But tell me as much as product can fail in analysis by mistake, can it not pass also by mistake ? Think over!
- I feel it will be a future requirement?
 Mass Balance application to Dissolution

Food for thought ...

- OOS Result obtained during BE limit? Current Scenario?
- Most probably CRO has done a mistake?
- Analysis has been done wrongly?
- BE protocol was not proper?
- There was lack of control on volunteers?
- I am right, you are wrong? <u>Why not apply OOS to BE failures?</u>

Food for thought

Rationality of BE Studies?

- Many people prefer to use the same batch of innovator for product development, analysis of exhibit batch, stability, pilot BE studies, pivotal BE studies etc. Why?
- People have observed difference in innovator product from batch to batch? Why?
- What is the consistency that we are talking about?

Is that the genesis of QbD?

References

- US FDA, Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms, April 2012
- USP 35 <711> Dissolution and <724> Drug Release <1088> In-Vitro and In-Vivo Evaluation of Dosage Forms
- USP <1092> The Dissolution Procedure: Development and Evaluation
- Quality by Design Approaches to Analytical Methods -FDA Perspective, Yubing Tang, Ph D, Octo. 11
- ICH Q8, Pharmaceutical Development, Aug 09

