

Desk Book of Pharmaceutical Dissolution Science and Applications

Second Edition, Revised and Updated

Editors:

Sandip B. Tiwari
Umesh V. Banakar
Vinod P. Shah

Society for Pharmaceutical Dissolution Science (SPDS)

**Desk Book of
Pharmaceutical Dissolution Science and Applications**

Second Edition, Revised and Updated

Editors

Sandip B. Tiwari

Umesh V. Banakar

Vinod P. Shah

Published by:

Society for Pharmaceutical Dissolution Science (SPDS), Mumbai, India

Copyright ©2022 by **Society for Pharmaceutical Dissolution Science (SPDS)**, Mumbai, India.

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other non-commercial uses permitted by copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions Coordinator,” at the address below.

Society for Pharmaceutical Dissolution Science (SPDS)

7, Prabhat Nagar, Near 24 Carat, SV Road,
Jogeshwari West, Mumbai – 400102 INDIA

Email: contact@spds.in

Website: www.spds.in

Ordering Information:

Quantity sales. Special discounts are available on quantity purchases by corporations, associations, and others. For details, contact the publisher at the address above.

Printed in Mumbai, India

Publisher's Cataloging-in-Publication data

Sandip B. Tiwari, Umesh V. Banakar, Vinod P. Shah - Editors

Title of the book: Desk Book of Pharmaceutical Dissolution Science and Applications

Second Edition - 2022

Price: INR 1400/- (For Outside India: 40 USD)

ISBN 13 - 978-81-932200-0-9

Introduction

Society for Pharmaceutical Dissolution Science (**SPDS**) was formed on 16th July 2012 at Mumbai, India with the objective of promoting the science and technological development in the field of dissolution testing among pharmaceutical professionals from industry, academia and regulatory bodies. The vision and mission statement of SPDS is noted below

Vision

To be as one of the most prominent professionals body focusing on dissolution science among the pharmaceutical industry and academia

Mission

To dissipate the science and advancement taking place in the field of dissolution related to clinical application and methods.

The First Edition of the *Desk Book of Pharmaceutical Dissolution Science and Applications* was well received by pharma researchers and had a positive feedback from the users. With many advances taking place in the field of dissolution science it was decided to bring out the Second Edition of the book with additional information on Dissolution Science and Application. With contributions from expert scientists across the globe on the subject matter, SPDS is bringing this Second Edition of the *Desk Book of Pharmaceutical Dissolution Science and Applications*. The aim is to provide the academia industry and research scientists in general an overview of basics fundamentals in the dissolution science and testing, recent developments in instrumentation and automation, changing regulatory requirements and innovations in the area of dissolution science and dissolution/*in vitro* release for novel dosage forms. The chapters provide details about the instrument operation, tips to overcome problems in design and development with adequate literature citations. The chapters also reveal methods of statistical analysis and interpretation of dissolution test data, application of data in terms of correlation with bioavailability and bioequivalence. The new and revised chapters discuss the role of solid-state properties, role of excipients and use of biorelevant media, role of dissolution in nutraceuticals and natural products and role of dissolution/drug release in regulatory applications towards biowaiver. This is a unique book of its kind, providing sound knowledge of scientific principles of dissolution and its applications.

We look forward to your contribution to SPDS's endeavour to bring best in dissolution technologies to the researcher in the field and enhance understanding of the subject.

L. Ramaswamy, Ph.D.

General Secretary,
SPDS, Mumbai, India

Preface

The roots of *in vitro* dissolution testing can be traced to late 19th century. The progression in the understanding of the science involved in solubility-based dissolution process and its applications over 130+ years has found a firm footing in drug development process and various allied disciplines associated within it, especially, in defining and establishing the quality attributes of a pharmaceutical product and its performance, both *in vitro* and *in vivo*. As a result, dissolution testing has emerged as a regular quality control procedure in good manufacturing practice. Whether or not its numbers have been correlated with biological effectiveness, the standard dissolution test is a simple and, perhaps, an inexpensive indicator of the physicochemical consistency of the product. As of date, *in vitro* dissolution tests seem to be the most reliable predictors of *in vivo* availability. Although official tests have great practical value, the fact that there is still a need for a test more directly related to bioavailability has been recognized.

Despite the accumulation of a massive body of information and data relating to the various aspects of dissolution test(ing), the pursuit to accurately predict *in vivo* performance continues unabatedly even today. The array of attempts – Biopharmaceutics Classification System (BCS), Topical Drug Classification System (TCS), *in vitro* release testing (IVRT), *in vivo* permeation testing (IVPT), physiological based pharmacokinetic modeling (PBPK), development of ‘more’ bio-physiologically relevant dissolution test, proliferation and marketing of bioavailability predictive software(s), drafts and innumerable revisions of regulatory guidances and/or recommendations from regulatory agencies across the world, are but a few of the many attempts that are being embarked upon in this pursuit. The net outcome from these attempts has resulted in the realization that “*the more we learn, the less we know!*”

While a solution to this pursuit appears to be beyond reach, at the present time, the more recent foray of *in vitro* dissolution testing has been realized in development of new drug products via 505(b)(2) new drug application (NDA) route, in development of nutraceuticals and natural products, development of biosimilars, among others. It is amply evident and clear to those that have a longstanding as well as continued involvement in *in vitro* dissolution test(ing), that the science and applications of dissolution test(ing) in all aspects of the life cycle of a drug product are still evolving and maturing.

It was our privilege to bring forth the first edition of this text in 2015. Now it is our pride to present to you the second edition. The intention of this desk book (2nd edition) continues to present a comprehensive mass of critical information, as a ready reference, to the R&D (formulation and analytical), QC/QA and PK professionals concerning the science and applications of effective dissolution testing and its utility in drug development. In addition to the topics addressed in the 1st edition, the role of dissolution test(ing) in development of new drug products via 505(b)(2) NDA, in development of nutraceuticals and natural products, role of solid-state properties, role of excipients and use of biorelevant dissolution media, use of dissolution test for biowaivers,

among others, have been included. As a result, this text should be considered in conjunction with the first edition to gain a comprehensive and wholistic understanding of the science and applications of dissolution test(ing).

The editors: Sandip B. Tiwari, PhD (SBT), Umesh V. Banakar, PhD (UVB) and Vinod P. Shah, PhD (VPS), are indebted to the authors for their contributions to this desk book. Additionally, the editors would like to thank the Society for Pharmaceutical Dissolution Science (SPDS) for its support in bringing forth this textbook. Furthermore, the editors express gratitude to Ms. Bhakti Poonia of Sotax India Pvt. Ltd., and Mr. Tarun Soni of NIC Interactive, the printers and publishers of this desk book for their expeditious and timely support. Special thanks are extended to L.Ramaswamy, PhD, General Secretary, SPDS for his unwavering support and encouragement through all the phases of this project. Last, but not the least, the editors would like to thank all the well wishers for their support that is often taken for granted, however, needs to be recognized.

Sandip B. Tiwari, PhD

Umesh V. Banakar, PhD

Vinod P. Shah, PhD, FAAPS, FFIP

Forward

Society for Pharmaceutical Dissolution Science (SPDS) is the first and only professional organization entirely dedicated to understanding and advancement of dissolution science. It was created to promote and update the development of science and technology in dissolution among the pharmaceutical professionals and academia. It provides an ideal platform to discuss the advances in dissolution science.

The Vision of SPDS is to be one of the most prominent professionals body focusing on dissolution science, and its mission is to dissipate the science and advancement taking place in the field of dissolution related to clinical applications and methods.

Dissolution testing over the last half century has emerged as a highly valuable *in vitro* test to characterize the drug product performance. Increasingly *in vitro* dissolution testing is relied on to assure product performance. While traditionally developed for solid oral dosage forms, the use of dissolution / drug release testing has been widened to a variety of novel dosage forms such as transdermals, semi-solids, liposomes, parenteral preparations and now nutraceuticals. Scientifically, a lot of progress has been made in the area of dissolution / drug release over last few decades.

Dissolution testing is currently enjoying a resurgence of interest on academic as well as on industrial and regulatory levels. The groundwork should continue to be focused on the development of dissolution tests and testers that are both biorelevant and can be adapted to routine quality control. To further improve the predictive capability of dissolution testing, there needs to be further refinement of the dissolution media and use of appropriate hydrodynamic designs that can better model flow patterns in the gut. It is likely that dissolution testing will become an even more powerful tool for the assurance of product quality, in the broadest sense in the years to come.

Various chapters included in this Desk Book include historical highlights, dissolution science and its impact on bioavailability, factors affecting dissolution, selection and influence of the dissolution media, qualification and validation of dissolution equipment, and automation are all aimed at providing practical insight that needs to be considered when developing a dissolution / drug release test. The general chapters also discuss compendial requirements and how to deal with “out of specification” dissolution results. Dissolution testing has gone beyond the tablets and capsule dosage forms, it now covers novel dosage forms such as transdermals, semisolids such as cream, ointment and gel, liposomes, parenterals, nutraceuticals and natural products. These advances need a good scientific base, good discussions and deliberations, and SPDS provides an ideal platform for this.

A discussion forum for all the scientific, regulatory and practical application aspects in the field of dissolution / drug release is the best way to keep the dialogue running and to allow us to continue to make progress. SPDS is a very valuable forum in this regard.

The second edition of the Desk Book includes updated and new chapters related to the application of dissolution science including regulatory applications of biowaiver.

Vinod P. Shah, PhD, FAAPS, FFIP

Pharmaceutical Consultant,
North Potomac, MD, USA

Contributors

Akshata Shirodker-Naik, M.Pharm.

Goa College of Pharmacy

Panaji, Goa, India

shirodkerakshata@gmail.com

Alfred C. F. Rumondor, Ph.D.

Bristol Myers Squibb

556 Morris Ave, Bldg. S7, Summit, New Jersey 07901, USA

alfred.rumondor@bms.com

Anisha D'souza Ph.D.

Duquesne University, Mylan school of Pharmacy

600 Forbes Avenue, Pittsburgh, PA 15282

anisha149@gmail.com

Arvind K Bansal, Ph.D., FAAPS

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)
Sector 67, SAS Nagar, Punjab, India 160062

akbansal@niper.ac.in

Chen Zhang, Ph.D.

Greenlight Biosciences

5 Laboratory Drive, Suite 1250, Durham, NC 27709-0012

cwzhang@greenlightbio.com

Constantin Mircioiu, Ph.D. *

Director for Bioequivalence Studies at Biopharmacy & Pharmacology Res S. A.

23 PitarMos Str., Bucharest, Romania

constantin.mircioiu@yahoo.com

Dalia Simona Miron, Ph.D.

Faculty of Pharmacy, University of Medicine and Pharmacy

Carol Davila Bucharest, 020956, Bucharest, Romania

dalia.miron@umfcd.ro

Dhaval Patel, Ph.D.

Senior Director, PTC Therapeutics

Hopewell, New Jersey 08534, USA

dpatel@ptcbio.com

Flavian Ștefan Rădulescu

Faculty of Pharmacy, University of Medicine and Pharmacy

Carol Davila Bucharest, 020956, Bucharest, Romania

flavian.radulescu@umfcd.ro; flavian_stefan@yahoo.com

James M Butler, Ph.D.

GlaxoSmithKline R&D, Biopharmaceutics, Product Development & Supply

David Jack Research Centre, Park Road, Ware, Hertfordshire, UK

james.m.butler@gsk.com

Jayvadan K. Patel, Ph.D.

Nootan Pharmacy College, S. P. Vidyadham

Kamana Crossing, Visnagar, Gujarat, India 384315

Jayvadan04@yahoo.com

Jean-Louis Raton

SOTAX AG

Nordring 1, CH-4147 Aesch, Switzerland

Jean-Louis.Raton@sotax.com

Jean-Marie Glantzmann

Novartis Pharma AG

Basel, Switzerland

jean-marie.glantzmann@novartis.com

Jean-Michel Cardot, Ph.D.

Laboratory of Biopharmacy, School of Pharmacy

EA 4678 University of Auvergne, France

j-m.cardot@orange.fr

Jiantao Zhang, Ph.D.

Cixi Institute of Biomedical Engineering

Ningbo Institute of Materials Technology and Engineering

CAS, Ningbo 315300, China

zhangjiantao@nimte.ac.cn

Mangal S. Nagarsenker, Ph.D.

Department of Pharmaceutics, Bombay College of Pharmacy

Kalina, Santacruz (East), Mumbai, Maharashtra, India 400098

mangal.nagarsenker@gmail.com

Ming Ji, M.S.

BASF Corporation
500 White Plains Road, Tarrytown, NY 10591
ming.ji@basf.com

Mukesh C. Gohel, Ph.D. *

Anand Pharmacy College
Opp. Town Hall, Anand, Gujarat, India 388 001
mukeshgohel@hotmail.com

Mukul Ashtikar Ph.D.

Drug Product Development, Janssen R&D, Johnson & Johnson
Beerse, Belgium
mashika@its.jnj.com

Nitin Kumar Swarnakar, Ph.D.

BASF Corporation
500 White Plains Road, Tarrytown, NY 10591
nitin.swarnakar@basf.com

Padma V. Devarajan, Ph.D.

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology
Matunga, Mumbai, India 400019
pvdevarajan@gmail.com

Pankaj S. Mandpe, Ph.D.

Micro Labs Limited
CTS No. 73, Saki Estate, Chandivali, Saki Naka, Andheri (E), Mumbai, India 400 072
pankajs@microlabs.in

Rajashree Gude, M.Pharm.

Goa College of Pharmacy|
Panaji, Goa, India
rgude69@gmail.com

Ravi Vishwanath

Manufacturing, Viatris Laboratories
Nashik TB no. 27, Dream Villas, Himraj Colony, Pune Road, Nashik, India 422011
ravinathjay@gmail.com

Samarth D Thakore

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)
Sector 67, SAS Nagar, Punjab, India 160062
sthakore27@gmail.com

Samir Haddouchi

SPS Pharma Services
3, rue Chateaubriand, 45071 Orléans Cedex 2, France
samir.haddouchi@sps-pharma.com

Sandip B Tiwari, Ph.D.

BASF Corporation
500 White Plains Road, Tarrytown, NY 10591
sandip.tiwari@basf.com

Sanket M. Shah Ph.D.

Drug Product Development, Janssen R&D
Johnson & Johnson, Beerse, Belgium
sshah100@its.jnj.com

Sarsvat Patel, Ph.D.

Clinical Pharmacology and Toxicology
Repare Therapeutics, Cambridge, MA 02142
sarsvatpatel@gmail.com

Sid Bhoopathy, Ph.D.

Absorption Systems
436 Creamery Way, Suite 600, Exton, Pennsylvania 19341-2554 USA
Sbhoopathy@absorption.com

Subramanian S. Iyer, Ph.D.

Lab Iconics Technologies LLP,
Flat No.412 Emerald Block, My Home Jewel Apartments, Madinaguda, Hyderabad, India 500049
subramanian.iyer@labinomics.com

Suresh Venkataram, Ph.D.

Veritas Research Incorporation, A Unit of Acme Generics Pvt. Ltd.
75/A, 15th Cross, 1st Phase JP Nagar, Bangalore, India 560078
sv@veritasresearch.in

Umesh Banakar, Ph.D.

Banakar Consulting Services
Carmel, IN 46032, USA
ubanakar@gmail.com

Vatsala Naageshwaran

Absorption Systems
436 Creamery Way, Suite 600, Exton, Pennsylvania 19341-2554 USA
vnaageshwaran@absorption.com

Vibha Puri, Ph.D.

Bristol Myers Squibb
556 Morris Ave. Bldg. S7, Summit, New Jersey 07901, USA
Vibha.puri@bms.com

Vijay U. Kshirsagar, M.Sc.

A.I.C., TRAC Pharma Consulting
B-602, Ashapura Dham, Palm Beach Road, Sector 16, Sanpada, Navi Mumbai, India 400705
vukshirsagar@gmail.com

Vinod P. Shah, Ph.D., FAAPS, FFIP

Pharmaceutical Consultant
North Potomac, MD, USA
Dr.vpshah@comcast.net

Vivek V. Dhawan, M. Pharm.

Department of Pharmaceutics, Bombay College of Pharmacy
Kalina, Santacruz (East), Mumbai, Maharashtra, India 400098

**Deceased at the time of publication. The Editors acknowledge the contributions of Prof. Gohel and Prof. Constantin to the Deskbook and pray to almighty to give eternal peace to the departed soul.*

Contents

Introduction.....	I
Preface.....	II
Forward.....	IV
Contributors	VI
1. Historical Highlights and the Need for Dissolution Testing	1
<i>Vinod P. Shah</i>	
2. Dissolution – Methodology and Scientific Principles	11
<i>Suresh Venkataram</i>	
3. Mechanics of Dissolution and Purposeful Dissolution Testing: Bridging the gap!.....	21
<i>Umesh Banakar</i>	
4. Role of Solid-State Properties in Drug Dissolution	37
<i>Alfred C. F. Rumondor, Dhaval Patel, Vibha Puri, Samarth D. Thakore and Arvind K Bansal</i>	
5. Roles of Excipients in Drug Dissolution.....	75
<i>Chen Zhang, Jiantao Zhang, Ming Ji, Nitin Kumar Swarnakar and Sandip Tiwari</i>	
6. <i>In Vitro-In Vivo</i> Correlation: Application and Limitations.....	95
<i>Jean-Michel Cardot</i>	
7. Biorelevant Dissolution Testing for Oral Products	121
<i>Saraswatkumar Patel and James Butler</i>	
8. Automation of Dissolution Testing	139
<i>Samir Haddouchi</i>	
9. A Review of Dissolution Testing with Flow-through Cell (USP Apparatus 4).....	147
<i>Jean-Marie Glantzmann and Jean-Louis Raton</i>	
10. Comparison of Non-clinical Permeability Techniques for BCS Classification - Tools to Augment Dissolution Outcomes	161
<i>Vatsala Naageshwaran and Sid Bhoopathy</i>	
11. Role of Dissolution in the Development of a New Drug Product: Focus on 505(b)(2) NDA.....	181
<i>Pankaj Mandpe and Umesh Banakar</i>	
12. Drug Release from Semisolid Dosage Forms	195
<i>Flavian Ștefan Rădulescu, Dalia Simona Miron and Vinod P. Shah</i>	

13. <i>In Vitro</i> Release Testing of Nanoparticulate Drug Delivery Systems.....	217
<i>Anisha D'souza, Vivek Dhawan, Mukul Ashtikar, Sanket Shah, Mangal Nagarsenker, and Padma V. Devarajan</i>	
14. Nutraceuticals and Natural Products: Role of Dissolution and Release Testing.....	253
<i>Rajashree Gude, Akshata Shirodker-Naik and Umesh Banakar</i>	
15. Mathematical Treatment of Dissolution Data for Extraction of Vital Product Information.....	269
<i>Mukesh C. Gohel, Sandip Tiwari and Jayvardan K. Patel</i>	
16. Comparative Analysis of Dissolution Data.....	279
<i>Constantin Mircioiu</i>	
17. Investigation of Out of Specification (OOS) Results Obtained in Dissolution Testing.....	293
<i>Vijay U. Kshirsagar</i>	
18. Nuances of Analytical Method Validation and Computer System Validation for Dissolution Apparatus	307
<i>Subramanian S. Iyer and Ravi Vishwanathan</i>	
19. Critical Notes in Dissolution Testing	327
<i>Sandip Tiwari, Umesh Banakar and Vinod Shah</i>	